Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Chemosphere ; 307(Pt 1): 135708, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1936146

ABSTRACT

The coronavirus (COVID-19) is becoming more threatening with the emergence of new mutations. New virus transmission and infection processes remain challenging and re-examinations of proper protection methods are urgently needed. From fluid dynamic viewpoint, the transmission of virus-carrying droplets and aerosols is one key to understanding the virus-transmission mechanisms. This study shows virus transmission by incorporating flow-evaporation model into the Navier-Stokes equation to describe the group of airborne sputum droplets exhaled under Rosin-Rammler distribution. Solid components and humidity field evolution are incorporated in describing droplet and ambient conditions. The numerical model is solved by an inhouse code using advection-diffusion equation for the temperature field and the humidity field, discretized by applying the total-variation diminishing Runge-Kutta method. The results of this study are presented in detail to show the different trends under various ambient conditions and to reveal the major viral-transmission routes as a function of droplet size.


Subject(s)
COVID-19 , Humans , Humidity , Particle Size , Respiratory Aerosols and Droplets , Sputum
2.
Physics of fluids (Woodbury, N.Y. : 1994) ; 33(12), 2021.
Article in English | EuropePMC | ID: covidwho-1602666

ABSTRACT

The continuance of the COVID-19 pandemic largely depends on the spread of virus-carrying aerosols in ambient air. The mechanism of virus transmission and infection remains under intense investigation. In this study, an evaporation flow model of airborne sputum droplets is proposed which considers the evolution effects of the humidity field under different particle distributions and solid/salt fraction interactions. The incompressible Navier–Stokes equations characterize a stream of airflow jets, and the convection-diffusion-evaporation process is used to account for the inhomogeneous humidity field caused by the respiratory tract. Momentum equations for droplet dynamics which involve the effects of drag, gravity, and Brownian motion on sputum droplets are introduced to quantify the transport of droplets in a humidity field. The Lattice Boltzmann method is used to track the evolution of the aerosol in space and time under different ambient temperature and relative humidity conditions. The results of the simulation demonstrate that airborne humidity accelerates the evaporation rate of droplet, while supersaturated humid air forms a vapor mass in front of the respiratory tract. Despite the short lifespan of this phenomenon, it significantly hinders the evaporation of the droplets. Besides, the droplet vortex dynamics in a humidity field are sensitive to the droplet size.

SELECTION OF CITATIONS
SEARCH DETAIL